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Abstract

Given its geometric similarity to large‐scale production plants and the excellent

possibilities for precise process control and monitoring, the classic stirred tank

bioreactor (STR) still represents the gold standard for bioprocess development at a

laboratory scale. However, compared to microbioreactor technologies, bioreactors

often suffer from a low degree of process automation and deriving key performance

indicators (KPIs) such as specific rates or yields often requires manual sampling and

sample processing. A widely used parallelized STR setup was automated by con-

necting it to a liquid handling system and controlling it with a custom‐made process

control system. This allowed for the setup of a flexible modular platform enabling

autonomous operation of the bioreactors without any operator present. Multiple

unit operations like automated inoculation, sampling, sample processing and ana-

lysis, and decision making, for example for automated induction of protein pro-

duction were implemented to achieve such functionality. The data gained during

application studies was used for fitting of bioprocess models to derive relevant KPIs

being in good agreement with literature. By combining the capabilities of STRs with

the flexibility of liquid handling systems, this platform technology can be applied to a

multitude of different bioprocess development pipelines at laboratory scale.

K E YWORD S

laboratory automation, maximum likelihood estimation, process control system, robotic
integration, stirred tank bioreactor

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium,

provided the original work is properly cited.

© 2021 The Authors. Biotechnology and Bioengineering published by Wiley Periodicals LLC

Abbreviations: API, application programming interface; CDW, cell dry weight (gL‐1); CV, coefficient of variation (%); GFP, green fluorescent protein; IPTG, isopropyl‐β‐D‐
thiogalactopyranoside; KPI, key performance indicator; MTP, microtiter plate; OD, optical density; ODE, ordinary differential equation; PCS, process control system; qS, biomass‐specific
substrate uptake rate [g·g−1·h−1]; STR, stirred tank bioreactor; YP/X, biomass‐specific product yield [gg‐1]; YX/S, substrate‐specific biomass yield [gg‐1]; µmax, maximum growth rate [h−1].

Holger Morschett, Niklas Tenhaef, and Johannes Hemmerich contributed equally to this study.

http://orcid.org/0000-0001-9784-3626
http://orcid.org/0000-0003-0704-5597
mailto:m.oldiges@fz-juelich.de
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fbit.27795&domain=pdf&date_stamp=2021-05-03


1 | INTRODUCTION

Bioprocess development faces the challenge of investigating a large

set of interconnected parameters and adjusting them to optimal

values in the least amount of time possible. In the interests of cost,

time and resource efficiency, new processes are firstly developed at

laboratory scale (Doig et al., 2006; Marques et al., 2010). Once

specified key performance indicators (KPIs) have been reached, the

processes are gradually scaled up to the production environment.

Given its geometric similarity to large‐scale production plants and

the excellent possibilities for precise process control and monitoring,

the classic stirred tank bioreactor (STR) is considered the gold

standard for bioprocess development at a laboratory scale.

Among the key parameters of every bioprocess are concentra-

tions of biomass, substrate, and product, laying the basis to derive

KPIs, such as yields or specific rates as intrinsic properties of the

investigated microbial process. Today, various on‐line and in‐line
probes are available for process analytics, often based on the use of

optical or spectroscopic methods. Selected examples can be found in

studies by Tamburini et al. (2014), Kreyenschulte et al. (2015), and

Lee et al. (2004). However, these technologies typically suffer from

specific drawbacks like limited measuring ranges, interference by

dispersed gas, (bio‐)fouling or the necessity of using advanced

models and extensive calibration (Chmiel, 2011; Vojinović

et al., 2006). In addition, automated methods for sample‐based
analysis, for example via at‐line high performance liquid chromato-

graphy (Tohmola et al., 2011) or flow injection coupled to biosensors

(Peuker et al., 2004), are available. A common aspect of the above‐
mentioned methods is the typically high effort for setup and main-

tenance, so that their application with STRs in research environ-

ments with frequently changing microbial systems and bioprocess

conditions may be difficult to justify.

Thus, relevant measures are often acquired manually using

sampling‐based off‐line methods. Although autosamplers can be

used as a support, they only handle the actual sampling, but not the

subsequent processing and analysis. Consequently, manual opera-

tion of STRs necessitates extensive hands‐on‐time if data is

acquired with appropriate temporal resolution and conflicts with

regulated working hours arise easily. Additional effort is needed if

dynamic adjustments and decision making is required based on

monitoring certain variables at runtime followed by event‐based
triggering. For example, in the case of inducible expression of

heterologous protein, where premature induction may easily lead to

reduced overall performance (Huber et al., 2009). Here, high tem-

poral resolution of biomass concentration is crucial for optimal

timing of induction events.

Coupled with the increasing propagation of advanced micro-

cultivation systems (Hemmerich, Noack, et al., 2018), a variety of

technologies for laboratory automation have found their way into

research and development laboratories over the past two decades

(Baumann et al., 2015; Cruz Bournazou et al., 2017; Funke

et al., 2010; Hemmerich, Tenhaef, et al., 2018; Heux et al., 2014;

Puskeiler et al., 2005; Rohe et al., 2012). By integrating liquid

handling robots and other connected devices such as centrifuges,

microtiter plate (MTP) readers and others, automated microcultiva-

tion platforms have been created that fundamentally changed the

way process developers work. Nowadays, microscale cultivation

processes allow parallelized approaches to a high extent but can also

be automated to a large degree. This includes preparatory work, as

well as sampling and sample processing up to analysis.

The application of such automation strategies must not be

limited to microbioreactor systems, and thus, there are strong

arguments that suggest generalizing automation technologies to-

wards a modularized solution for automated operation for labora-

tory scale STR processes. In this study, such platform was realized

by coupling four parallelized STRs to a liquid handling robot. A

custom‐made process control system (PCS) based on Python was

developed, integrating a higher‐level process intelligence to or-

chestrate different monitoring and control modules: (1) automated

inoculation, (2) biomass‐triggered induction, (3) discontinuous

sampling with at‐line quantification of biomass, product, and sub-

strate as well as (4) model‐driven estimation of KPIs for in‐depth
process analysis.

2 | MATERIALS AND METHODS

2.1 | Chemicals, strain, and media

All chemicals were obtained from Sigma‐Aldrich or Roth and were of

analytical grade. Corynebacterium glutamicum ATCC13032 was used

for all cultivation experiments. The strain carried a pEKEx2 plasmid

for isopropyl‐β‐D‐1‐thiogalactopyranoside (IPTG)‐inducible expres-

sion of a pCGPhoDCg‐GFP fusion protein being secreted via the twin‐
arginine translocation pathway (Meissner et al., 2007) and was cul-

tivated in CGXII medium (Keilhauer et al., 1993): 41.85 g

3‐(N‐morpholino)propanesulfonic acid (shake flask only), 20 g glucose

(varied during STR experiments), 20 g (NH4)2SO4, 5 g (NH2)2CO

(shake flask only), 1 g KH2PO4, 1 g K2HPO4, 1 g MgSO4∙7H2O,

13.25mg CaCl2∙2H2O, 50mg kanamycin sulfate, 30mg proto-

catechuic acid, 10mg FeSO4∙7H2O, 10mg MnSO4∙H2O, 1mg

ZnSO4∙7H2O, 0.313mg CuSO4∙5H2O, 0.2 mg biotin, 0.02mg

NiCl2∙6H2O (all values refer to 1 L of cultivation medium). The pH

was adjusted to 7 using 4M NaOH and 0.2% (vv‐1) antifoam 204

(Sigma‐Aldrich) was added for STR cultivation.

2.2 | Cultivation

2.2.1 | Strain maintenance

Exponentially growing cells from STR cultivation were harvested,

centrifuged for 5min at 9283g in a GS‐15 R (Beckman Coulter), re-

suspended to an optical density (OD) of 40 in 50% (w v‐1 glycerol

with 0.9% (w v‐1) NaCl and 1ml aliquots were frozen to −80°C for

storage.
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2.2.2 | Precultivation

Fifty milliliter medium was inoculated with 150 µL cryoculture and

incubated in a fourfold baffled 500mL shake flask at 30°C, 300 rpm

and 25mm shaking diameter in a Multitron Pro incubator (Infors).

The culture was harvested during exponential growth as monitored

by an SFR Vario (PreSens), centrifuged for 5min at 9283g in a

GS‐15R and resuspended in approx. 20 mL 0.9% (w v‐1) NaCl to

obtain a stock suspension for the inoculation of STRs.

2.2.3 | STR cultivation

Cultures were run in a fourfold parallelized glass STR setup equipped

with two Rushton impellers each (Dasgip) at 30°C and gassing with

compressed air was maintained at 60 NLgas∙Lliquid‐1∙h−1. Starting vo-

lume was 1 L (batch) or 0.8 L (fed‐batch). pH was monitored with

405‐DPAS‐SC‐K8S/225/120 electrodes (Mettler Toledo) and titrated

to 7 using 25% (w v‐1) NH3 (aq) and 7M H3PO4. Dissolved oxygen was

measured by VisiFerm DO 225 optodes (Hamilton) and regulated to

≥30% using a stirrer cascade (400–1400 rpm).

2.3 | Automated at‐line procedures

Automated at‐line procedures were performed on a Freedom EVO

200 robotic platform equipped with a liquid handling arm with eight

steel tips and a robotic manipulator (Tecan). An Infinite M 200 Pro

MTP reader (Tecan), a Rotanta 460 RSC MTP centrifuge (Hettich) as

well as a custom‐made station for stirring of suspensions in 50mL

beakers based on a MIXdrive 1 XS magnetic stirrer controlled by a

MIXcontrol 20 unit (2mag) were additionally integrated. One of the

MTP carriers on the robotic worktable was coupled to a Microcool

MC 600 refrigerated circulator (Lauda). The whole robotic platform

was equipped with a laminar flow hood with HEPA filters ensuring a

sterile environment above the robotic worktable. The worktable it-

self was thoroughly cleaned with ethanol before each experiment.

A setup for robotic dead‐end dosing and sampling was devel-

oped. Instead of a riser pipe, each STR was equipped with a custom‐
made glass port below liquid level being designed not to induce dead

zones to the bulk liquid while simultaneously having only minimal

inner volume (Figure 1a). Via Bioprene tubes (1.0 mm inner diameter,

Watson‐Marlow) the ports were connected to an automation module

(Figure 1b) placed on the robotic worktable in reach of the liquid

handling arm. For each of the four channels, it carried a pierceable

silicone septum as sterile barrier. The whole setup is fully auto-

clavable ensuring straightforward operability. The total inner volume

was ~350 µL per channel.

2.3.1 | Sampling

Upon each sampling event triggered by the PCS 950 µL sample was

withdrawn from each individual STR via the respective channel ap-

plying the following steps: (1) covering of septum with ethanol, (2)

sampling and discarding of 950 µL to exchange inner volume of the

channel, (3) sampling 950 µL, (4) removing and discarding of ethanol

above the septum. Depending on gas hold‐up, varying fractions of

dispersed gas may be co‐aspirated during sampling, resulting in re-

duced accuracy. Moreover, small gas bubbles may remain within the

sampled liquid and can interfere with optical biomass measurement.

Therefore, bubbles were removed by slow dispense into a

96‐deepwell MTP (Ritter) and re‐aspiration of the needed volume for

subsequent steps. Additionally, pipetting parameters were optimized

towards removing dispersed gas from the liquid.

2.3.2 | Biomass quantification

At‐line biomass was acquired as absorption at 600 nm in the MTP

photometer using 250 µL cell suspension in 96‐well MTPs (Greiner

Bio‐One). If needed, samples were diluted in 200mM

3‐(N‐morpholino)propanesulfonic acid (pH 7) while decision on the

appropriate dilution factor was made by the PCS (Section 2.5).

F IGURE 1 Hardware setup. (a) Four parallelized laboratory scale STRs are equipped with a low‐volume port below the liquid level. (b) The
ports are connected to a custom‐built automation module allowing for sterile dosing and sampling operations using a liquid handling robot. STR,
stirred tank bioreactor [Color figure can be viewed at wileyonlinelibrary.com]

MORSCHETT ET AL. | 2761

http://wileyonlinelibrary.com


2.3.3 | Cell separation

After biomass measurement (Section 2.3.2), cells in the remaining

sample were separated by 5min centrifugation at 2400g in the ro-

botic centrifuge and cell‐free supernatants were used for further

analysis.

2.3.4 | Glucose quantification

Glucose was quantified using a hexokinase assay (DiaSys) in 96‐well

MTP format. Using the robotic platform, cell‐free supernatants

(Section 2.3.3) were appropriately diluted in 0.9% (w v‐1) NaCl, 20 µL

were mixed with 280 µL assay mastermix and incubated for 6min at

room temperature before absorption measurement at 365 nm in the

MTP reader. Results were calibrated against glucose standards

(0.025–2 gL‐1) processed in the same way.

2.3.5 | Protein quantification

Green fluorescent protein (GFP) was measured in 250 µL cell‐free
supernatant obtained from robotic cell separation (Section 2.3.3).

Fluorescence at 520 nm was acquired after excitation at 488 nm in

the MTP reader using 96‐well MTPs while decision on the appro-

priate dilution factor was made by the PCS (Section 2.5).

2.3.6 | Inoculation

Inoculation stock suspension (Section 2.2.1) was placed in the stirring

station in a pre‐sterilized 50mL beaker and mixed at 400 rpm. Using

0.9% (w v‐1) NaCl a dilution series of the suspension was auto-

matedly prepared and absorption was measured in the MTP reader

(Section 2.3.2) in technical replicates (n = 8). Stirring was paused

during aspiration to maintain pipetting accuracy. Based on the target

inoculation density initially defined by the operator, the needed

volume was calculated and injected into the STRs. In contrast to

sampling (Section 2.3.1), exchange of the inner volume of the re-

spective channels was skipped. Instead, 950 µL sterile water was

injected directly after dosing the inoculum to ensure the latter was

completely transferred into the STR bulk volume.

2.3.7 | Induction

Biomass concentration exceeding a threshold previously defined by

the operator triggered automated induction upon which 250 µL IPTG

stock (1M) was injected into the respective STR via the automation

module applying the dosing procedure as used for inoculation

(Section 2.3.6). Before usage, IPTG stocks were maintained at 4°C in

a custom‐build aluminum MTP sealed with a pierceable sterile foil

placed on the cooling carrier on the robotic worktable.

2.4 | Off‐line determination of biomass, glucose,
and protein

OD (600 nm) was measured in 10mm polystyrene semi‐micro cuv-

ettes (ratiolab) using an UV‐1800 photometer (Shimadzu). Samples

were diluted in 0.9% (w v‐1) NaCl to fit the linear range if necessary.

For cell dry weight (CDW) measurement, 1.5mL cell suspension

was centrifuged at 16,060g for 10min in a dried and pre‐weighed
reaction tube in a Biofuge Pico (Heraeus) and the supernatant was

removed. The pellet was dried at 80°C for 24 h, acclimated in a de-

siccator and weighed. CDW was calculated from the mass difference.

Off‐line glucose quantification was done with the same proce-

dure as reported in Section 2.3.4.

Extracellular protein was measured using the Pierce BCA Protein

Assay Kit (Thermo Fisher Scientific) in 96‐well MTP format according

to manufacturer's specifications. Samples were diluted in 0.9% (w v‐1)

NaCl whenever necessary. As an alternative, off‐line GFP fluorescence

measurements were conducted as described in Section 2.3.5.

2.5 | Python‐based PCS

An object‐oriented Python‐based PCS was developed to orchestrate

the actions of the liquid handling robotic platform according to the

needs of the experiment (Figure 2). It consists of the “auto_str” module

and several submodules. The “auto_str”module is imported by a Python

script referred to as “experiment.py”, which defines the basic order of

operations and loads the settings file to be used. Settings files are in

yaml format (Ben‐Kiki et al., 2009) and hold essential information like

sampling times, induction trigger values, pipetting volumes, file paths,

and more. Every experiment involves three stages: preparation, sam-

pling loop, and finalization. The sampling loop runs for as many cycles as

there were sampling times defined in the settings. In each cycle, robotic

actions are triggered, data is parsed, analyzed, and stored and decisions,

for example, about dilutions for the subsequent cycle, are made.

While all glucose measurements were conducted at the same di-

lution, for biomass and GFP a series of dilution levels was defined,

resulting in a series of nested measurement ranges. Dilutions were

performed in a single‐ or two‐step workflow focusing on minimal pi-

petting errors dependent on the actual volumes to be transferred.

Initial measurements were done with the lowest dilution feasible. In

case the actual measurement exceeded the center point of the

current measurement range, the dilution was incremented to its re-

spective next level in the subsequent cycle. Nesting of the individual

classes has been designed in such a way that a suitable measurement

range is always provided when changing classes and no gaps can occur.

This even applies if the measured value has significantly decreased in

the corresponding cycle against all expectations. This ensured a fully

autonomous selection of the suitable dilution stage (Figure S1).

The experiment logic itself is defined in the “Experiment” class

within the “auto_str” module. Instantiation of this class also creates

the necessary data structures utilizing pandas (McKinney, 2010) and

NumPy (Harris et al., 2020; van der Walt et al., 2011). The class
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utilizes submodules, for example, for execution of liquid handling

actions and for parsing of data files from the utilized MTP reader.

Control of the liquid handling platform is realized by the provided

application programming interface (API) via pythonnet (Cline

et al., 2019). Its basic function is to trigger predefined robotic scripts,

representing individual workflow steps. While this is sufficient in most

cases, a notable exception is the script which triggers measurement

processes of the MTP reader: Here, it was necessary to change the wells

and MTPs to be measured alongside the sampling cycles which is not

possible via the API. A customized solution was realized by saving the

respective robotic script as a template with placeholders for the dynamic

parts (i.e., well numbers and plate positions on the robotic worktable).

During the experiment run, the template was loaded, the placeholders

were substituted depending on the individual cycle, the script was saved,

and its execution triggered by the API. After liquid handling actions and

MTP reader measurements, data from the MTP reader was parsed using

pandas and analyzed using SciPy (Virtanen et al., 2020).

2.6 | Estimation of bioprocess model parameters

A model‐based approach was chosen to derive KPIs from cultivation

data stemming from different bioprocess designs. To describe the

nonlinear dynamics in concentrations of biomass, substrate, and

product, classical bioprocess modelling based on systems of ordinary

differential equations (ODEs) was performed.

In this study, some model parameters (yield coefficients) and

metrics derived thereof (prediction of maximum product titer) were

defined as KPIs of interest (cf. application studies). Model para-

meters were estimated based on all data from the independent

parallel cultivations using the “pyFOOMB” package (Hemmerich,

Tenhaef, et al., 2021). This package allows an object‐oriented im-

plementation of ODE‐based models and provides convenient routine

methods, for example, fitting models to experimental data. Having

full programmatic access via the Python language, seamless in-

tegration with other packages for scientific computing in highly

customized workflows is facilitated, for example, with the PCS de-

veloped in this study.

For parameter estimation including uncertainty analysis, paral-

lelized parametric bootstrapping was applied (see Hemmerich,

Tenhaef, et al. (2021) for more details). From the obtained dis-

tributions parameter values and lower/upper uncertainty bounds

were derived as medians and 2.5%–97.5% percentiles, respectively.

A detailed description of applied ODE models is provided in Sup-

porting Information Section 1.

3 | RESULTS AND DISCUSSION

3.1 | Automated at‐line measurements

Time series of biomass, substrate, and product as well as corre-

sponding KPIs are essentially valuable for the in‐depth description of

bioprocesses. In the present study suitable technology and methods

were developed, such as customized sampling ports for laboratory

scale STRs, a hardware interface to the robotic system as well as a

modular PCS. Special focus was put on the consistent application of

optical measurement techniques since these provide results com-

paratively quickly without specialized analytical instrumentation

except for an MTP reader and are therefore predestined for at‐line
process monitoring. The biomass measurement technique by optical

density and the applied assays for substrate and product quantifi-

cation provide a universal framework for fast at‐line analytics.

The applied methods for substrate and product quantification can be

considered as prototypic blueprints for a broad range of possible

future applications. In terms of a modular architecture, they can

be easily exchanged for other procedures to meet the specific re-

quirements of the bioprocess under investigation.

3.1.1 | At‐line biomass

In analogy to well‐established off‐line measurement of biomass by

OD (Sonnleitner et al., 1992), absorption at 600 nm was acquired

from crude cell suspension samples in MTPs. Here, 250 µL volume

per well proved optimal with respect to reproducibility as revealed in

F IGURE 2 Schematic representation of experimental workflow
with individual tasks being orchestrated by the Python‐based PCS.
PCS, process control system [Color figure can be viewed at
wileyonlinelibrary.com]
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preliminary experiments (Figure S2). As shown in Figure 3a, precisely

acquired at‐line OD (1.4% average coefficient of variation (CV) for

n ≥ 3 technical replicates) could be correlated with CDW measure-

ment by a second order polynomial within 0.05–0.80 gL‐1 CDW.

Thereby, already low biomass levels typically occurring at the

beginning of bioprocesses can be tracked. Higher biomass con-

centration can be measured by appropriate sample dilution to meet

the calibrated range of the method. Therefore, decision logics for

appropriate sample dilution were necessary and implemented into

the PCS as described in detail in Section 2.5.

3.1.2 | At‐line glucose

At‐line quantification of glucose implicates short data acquisition

times as well as a high dynamic range to keep the needed number of

dilution steps as low as possible. To meet these demands an enzy-

matic assay converting glucose to gluconate‐6‐phosphate was used.

Equimolar amounts of NADH formed are measured by 365 nm

absorption.

Characterization with standards revealed a linear range from

0.025 to 2 gL‐1 (Figure 3b). Due to this wide dynamic range, all cul-

tivation samples could be handled with a single dilution level defined

by the glucose concentration applied during the respective cultiva-

tion. Thereby, the full range of expected concentrations could be

covered at minimal number of analyses. For the given range stable

endpoint absorption was always achieved within 6min (Figure 3c)

enabling fast data acquisition with less than 8min from supernatants

to available concentration results.

During automated cultivation processes, all measurements were

performed from the same assay mastermix stored on the robotic

worktable and constant performance for at least 140 h was con-

firmed for storage at room temperature (Figure S3). Thus, one single

calibration acquired during the preparation phase could be used,

rather than repeated calibrations for individual sampling events.

Microbial cultivation is often coupled to formation of various by‐
products like organic acids (Paczia et al., 2012) and such compounds

may disturb analytics either by side reactions or by changing

reactivity of the applied enzyme system (Bisswanger, 2014;

Passonneau & Lowry, 1993). Selected compounds from microbial

(a) (b)

(c) (d)

F IGURE 3 Evaluation of at‐line procedures. (a) Calibration of CDW (gravimetric method) against at‐line acquired OD (MTP reader). Optical
measures at 600 nm and 250 µL liquid volume. Error bars derived from technical replicates (n ≥ 3). (B) Linear range of the assay. Error bars
derived from technical replicates (n = 5). (c) Reaction progress at different initial glucose concentrations (0.025–2 gL‐1, indicated by gradually
decreasing color transparency). (d) Calibration of extracellular protein concentration (bicinchoninic acid assay) against respective at‐line GFP
fluorescence (MTP reader). Error bars derived from technical replicates (n = 5). CDW, cell dry weight; GFP, green fluorescent protein;
MTP, microtiter plate [Color figure can be viewed at wileyonlinelibrary.com]
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central and overflow metabolism (e.g., lactate, malate, succinate)

were checked for interfering effects while none of the tested species

had an effect when 25mM were spiked into glucose standards

(Figure S4). Consequently, up to 250mM of tested agents may be

present in samples in case of 10‐fold dilution without effect on

glucose quantification which is far beyond expected concentrations

for the given model system.

3.1.3 | At‐line protein

In analogy to biomass (Section 3.1.1), secreted protein was also

monitored optically. GFP‐specific fluorescence at 520 nm could be

precisely measured in MTPs (1.4% average CV from n = 5 technical

replicates) after excitation at 488 nm (Section 2.3.5) of cell‐free su-

pernatants (Section 2.3.3). Translation of fluorescence by external

calibration using a bicinchoninic acid assay (Section 2.4) enabled at‐
line quantification of secreted protein in a range of 50–1340mg L‐1

protein by linear regression (Figure 3d). In analogy to biomass

measurements decision logics for appropriate at‐line dilution were

implemented into the PCS (Section 2.5).

3.2 | Proof of concept: Variation of glucose
concentration

Following hardware implementation (Section 2.3) and the establish-

ment of the robotic workflows, all procedures were embedded into

the PCS (Section 2.5) and the full setup was tested during a proof‐of‐
concept study where GFP‐secreting C. glutamicum was cultivated in

batch mode at three different initial glucose concentrations. All

cultures were induced with IPTG from the start. The following tasks

were addressed at‐line by the automated workflows and hardware

system: (1) inoculation to 0.05 g L‐1 CDW from a pre‐culture pro-

vided on the robotic worktable, (2) sampling of all reactors at 60min

interval, (3) measurement of biomass concentration with choice of

appropriate dilution level, (4) cell separation, (5) measurement of

extracellular glucose (fixed sample dilution sufficient) and protein

concentration from cell‐free supernatants.

As shown in Figure 4, biomass formation could successfully be

tracked via calibrated absorption measurements in all three STRs at

3.1% average CV. Corresponding glucose consumption was mon-

itored via the enzymatic assay at 5.7% average CV. Also, the course

of secreted GFP was tracked by fluorescence measurements at 4.4%

average CV. Thus, along 24 samples a total of 72 measurements

were taken per reactor, all fully automated without any interference

by the operator and thereby without gaps due to nighttime.

Data was fitted to an ODE model based on Monod kinetics

and growth‐coupled protein production (Supporting Information

Section 1.1). It can be seen that the model adequately describes

the experimental time series (Figure 4) and only minor deviations in

the biomass concentrations are visible after glucose depletion.

Table 1 provides an overview for selected KPIs.

Estimates for maximum growth rate µmax, biomass‐specific
substrate uptake rate qSmax, and substrate‐specific biomass yield

coefficient YX/S are in good agreement with literature data for the

corresponding wild type (Grünberger et al., 2013; Hemmerich,

Tenhaef, et al., 2018; Rohe et al., 2012; Unthan et al., 2014).

Although there is no literature known to the authors reporting on

YP/X, estimates are within reasonable range.

Overall, the proof‐of‐concept study showed that the developed

workflow is suitable for automated operation of parallelized

(a)

(b)

(c)

F IGURE 4 Proof‐of‐concept cultivation experiment for
autonomous STR operation workflow with three individual reactors
at different initial glucose concentrations. (a) Biomass. (b) Glucose.
(c) Extracellular protein. Dots represent measured data with error
bars representing measurement error estimated by parametric
bootstrapping (n = 10,000). Lines represent medians from 250
corresponding model fits with shaded areas as 2.5%–97.5%
percentiles (Section 2.6). STR, stirred tank bioreactor [Color figure
can be viewed at wileyonlinelibrary.com]
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laboratory scale STRs with minimized hands‐on time. Moreover, high

quality at‐line data could be acquired at feasible temporal resolution

and kinetic modeling was successfully applied to extract re-

levant KPIs.

3.3 | Application study I: Automated induction

The metabolic burden introduced by heterologous protein expres-

sion often comes along with a negative influence on quantity‐related
(e.g., titer, space‐time‐yield) and quality‐related (e.g., product stabi-

lity, by‐products) aspects of a target process (Marschall et al., 2016).

To optimize performance, inducible systems are widely used allowing

initial biomass formation without detrimental effects. Accordingly,

induction is a critical design aspect and requires special attention.

Optimal production can be achieved if inducer dosage is triggered

when exceeding a certain threshold in biomass concentration that

has been determined in advance. The identification of optimal in-

duction profiles requires several experiments (Kilikian et al., 2000).

At laboratory scale, this is typically achieved by manual operation

where the operator checks the condition of the culture at suitable

intervals and decides on the time of inductor addition based on the

data obtained.

In this application study, such task was automated by extending

the workflow from Section 3.2: After each measuring cycle, the ac-

tual biomass concentration was compared with a predefined

threshold and, if it was once exceeded, a defined amount of IPTG was

dosed into the corresponding STR. Four different induction thresh-

olds were tested in four STRs running in parallel and model‐based
analysis (Supporting Information Section 1.2) of the relationship

between biomass threshold for induction and corresponding product

concentration were derived.

Induction was implemented as event step determining the sud-

den change in the model behavior by using two different YP/X, namely

before and after induction. The modified model resulted in a good

match between predictions and experimental data (Figure S5). A

functional relationship between final GFP titer and biomass thresh-

old for induction could be derived (Figure 5a) which essentially

predicts high product titer for induction at low biomass concentra-

tions. Since the employed strain shows significant heterologous GFP

secretion without IPTG addition, the observed range is rather nar-

row (~1.3–1.8 g L‐1). This observation is supported by a low change in

qPmax upon IPTG addition (40% increase, Table 2). Thus, the predic-

tions revealed a low sensitivity of this strain for GFP secretion with

respect to inducer addition which agrees with previous experiments

(unpublished data). In contrary, the model predictions confirmed the

TABLE 1 Fitting results and derived
KPIs of the proof‐of‐concept cultivation

µ max (h−1) qSmax (g·g−1·h−1) qP max (g·g−1·h−1) Y X/S (g g) Y P/X (g g‐1)

Median 0.43 0.86 0.061 0.49 0.14

2.5%–97.5%

percentile

0.40–0.45 0.82–0.90 0.057–0.064 0.47–0.51 0.13–0.15

Note: Median values and uncertainties derived from 250 model fits per cultivation set (Section 2.6).

(a) (b) (c)

F IGURE 5 Application studies. (a) Induction profiling: Individual reactors were induced by IPTG dosage when crossing predefined CDW
thresholds. Dots represent measured data with error bars representing measurement error estimated by parametric bootstrapping
(n = 10,000). Line represents median from 250 corresponding model fits with shaded areas as 2.5%–97.5% percentiles. (b) Exemplary
representation of protein concentration time series of a single STR during exponential feeding at two different rates. Dots represent measured
data with error bars derived from accuracy of underlying unit operations by parametric bootstrapping (n = 10,000). Blue lines represent
outcome of 250 corresponding model fits. (c) Biomass‐specific product yield for eight different adjusted exponential growth rates. Dots and
error bars represent medians from 250 corresponding model fits with shaded areas as 2.5%–97.5% percentiles. Blue dots represent outcome of
250 corresponding model fits (Section 2.6). Jitter on blue dots indicates uncertainty of adjusted rates by feed pump inaccuracy (2%). CDW, cell
dry weight; IPTG, isopropyl‐β‐D‐1‐thiogalactopyranoside; STR, stirred tank bioreactor [Color figure can be viewed at wileyonlinelibrary.com]
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growth rate (Table 2) from the previous proof‐of‐concept study

(Section 3.2).

However, the demonstrated potential of this approach is ap-

parent: to enable model‐based design of bioprocesses to optimize

typical KPIs (here, titer), bioprocess models with sufficient predictive

power are required. The parallelized and automated data acquisition

from STRs, the by far most relevant bioreactor configuration, lays the

foundation for gaining the required information‐rich experi-

mental data.

3.4 | Application study II: Feed rate screening

Industrially relevant bioprocesses are often performed in fed‐batch
mode, where the limiting substrate is continuously fed. This offers

extended process control and prevents detrimental effects of high

substrate concentrations (Section 1). Among the most important

process parameters of a fed‐batch is the feed rate, which can have

direct influence on KPIs (Hemmerich, Labib, et al., 2020).

In the presented application study, two different exponential

feed rates were set per STR vessel, each being hold for a certain

timespan. The workflow validated in Section 3.2 was used with few

adaptations: Four STRs were set up with identical batch phases using

5 g L‐1 glucose as carbon source. After glucose consumption, feed

pumps were started with the first set of feed rates. After 5 h, feed

rates were changed to the second set, resulting in a total of eight

different feed rates tested. During feed phases samples were drawn

and processed every 30min. The resulting data was used to fit the

parameters of a fed‐batch bioprocess model (Supporting Information

Section 1.3).

GFP concentration in all four STRs rose over time depending on

the applied feed rate, as exemplified in Figure 4b. As expected,

higher feed rates (0.15–0.3 h−1) showed comparably low YP/X, ran-

ging from 0.13 to 0.20 g g‐1, while the lower feed rates (0.1 and

0.075 h−1) resulted in higher yields of 0.27 ± 0.06 and 0.30 ± 0.06 g g‐

1, respectively as presented in Figure 5c. Such inverse YP/X = f(µ)

relation has been described for the same strain with alternative

secreted protein products in fed‐batch (Hemmerich, Moch,

et al., 2018). Further studies reported on similar observations during

heterologous production of intracellular proteins in diverse host

systems applying batch experiments without externally controlled

growth rate. In particular, Heyland et al. (2011) explained their

observations by a redirection of metabolic flux to meet the increased

energy demand from heterologous protein production, meaning that

less protein synthesis capacity was available for biomass formation

(e.g., ribosomal proteins). Bienick et al. (2014), Borkowski et al.

(2016) and Klumpp et al. (2009) argued with modeling of growth

rate‐dependent ribosomal capacity, since these studies predict a

competition between translational capacity for building, for example,

ribosomal proteins and translation of recombinant mRNA whose

synthesis is not controllable by the cell.

The straightforward adaptation from batch to fed‐batch pro-

cessing with only marginal adaptations of the experiment logics

orchestrated by the PCS underlines the clear advantages of such

modular platform approaches: different experimental designs can

be implemented in rather short time facilitating time‐efficient
experimentation.

4 | CONCLUDING REMARKS

The presented study illustrates the development of an automated

system for taking, processing, and analyzing samples gathered from

widespread and flexible laboratory scale STR systems. A custom‐
made automation module was utilized for sterile coupling of the STRs

with a liquid handling system. An open and customizable PCS im-

plemented in Python orchestrated the execution of liquid handling

and data analysis procedures. Data obtained by the automated

workflows can be used to fit suitable bioprocess models, providing

thorough estimates of KPIs, essential for assessing process eco-

nomics and optimization.

Firstly, an appropriate sampling/dosing hardware was developed

and manufactured to provide an interface between the robotic

worktable and the STRs. This enabled at‐line execution of sampling

events to feed three validated optical assays, but also addition IPTG

as an inducer of heterologous protein expression in the application

studies. Due to the open nature of both the liquid handling hardware

and the PCS, other assays that are specifically needed for further

studies can be easily integrated.

The three application studies clearly demonstrated the benefits

of the system: without a human operator present, samples were

drawn at regular intervals and subsequently processed and analyzed.

Depending on the experiment, induction was done automatically,

triggered by a biomass measurement. The presented setup allows for

complex experiments as shown for screening eight exponential feed

rates in one experiment with only four STRs.

Since all analytical procedures were run at‐line, results were

available directly after the experiment to calibrate multistaged bio-

process models. This highlights the strength of combining the clas-

sical, flexible STR setup with an automated modular sampling and

processing approach for bioprocess modelling, a task which benefits

from high‐quality cultivation data.

The developed workflow could be extended by integrating

more sophisticated analytical devices, such as flow cytometry or

mass spectrometry, to enable a more detailed characterization and

TABLE 2 Fitting results and derived KPIs of the application
study “automated induction”

µ max (h−1)

basal qPmax

(g·g−1·h−1)

induced qPmax

(g·g−1·h−1)

Median 0.43 0.055 0.077

2.5%–97.5%

percentile

0.38–0.47 0.038–0.067 0.067–0.094

Note: Median values and uncertainties derived from 250 model fits per

cultivation set (Section 2.6).
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deeper understanding of the bioprocess of interest, but also deep‐
frozen sample storage is in reach for future applications. On the

software side, not only the processing of the raw measurement data

could be run at‐line, but also their direct integration into bioprocess

models for parameter estimation and fast model validation. This

would allow for automatic, model‐driven reconfiguration of running

cultivation experiments to quickly target the most interesting

process regions.

This presented combination of functionalities cannot be easily

achieved by other bioprocess development tools as it combines the

most prominent upsides of all utilized devices in a synergistic

manner.
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